skip to main content


Search for: All records

Creators/Authors contains: "Un, Hio‐Ieng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The field of organic electronics has profited from the discovery of new conjugated semiconducting polymers that have molecular backbones which exhibit resilience to conformational fluctuations, accompanied by charge carrier mobilities that routinely cross the 1 cm2/Vs benchmark. One such polymer is indacenodithiophene-co-benzothiadiazole. Previously understood to be lacking in microstructural order, we show here direct evidence of nanosized domains of high order in its thin films. We also demonstrate that its device-based high-performance electrical and thermoelectric properties are not intrinsic but undergo rapid stabilization following a burst of ambient air exposure. The polymer’s nanomechanical properties equilibrate on longer timescales owing to an orthogonal mechanism; the gradual sweating-out of residual low molecular weight solvent molecules from its surface. We snapshot the quasistatic temporal evolution of the electrical, thermoelectric and nanomechanical properties of this prototypical organic semiconductor and investigate the subtleties which play on competing timescales. Our study documents the untold and often overlooked story of a polymer device’s dynamic evolution toward stability.

     
    more » « less
  2. null (Ed.)
  3. Abstract

    Solution‐processable highly conductive polymers are of great interest in emerging electronic applications. For p‐doped polymers, conductivities as high a nearly 105S cm−1have been reported. In the case of n‐doped polymers, they often fall well short of the high values noted above, which might be achievable, if much higher charge‐carrier mobilities determined could be realized in combination with high charge‐carrier densities. This is in part due to inefficient doping and dopant ions disturbing the ordering of polymers, limiting efficient charge transport and ultimately the achievable conductivities. Here, n‐doped polymers that achieve a high conductivity of more than 90 S cm−1by a simple solution‐based co‐deposition method are reported. Two conjugated polymers with rigid planar backbones, but with disordered crystalline structures, exhibit surprising structural tolerance to, and excellent miscibility with, commonly used n‐dopants. These properties allow both high concentrations and high mobility of the charge carriers to be realized simultaneously in n‐doped polymers, resulting in excellent electrical conductivity and thermoelectric performance.

     
    more » « less